Ferroelasticity in Two-Dimensional Tetragonal Materials

Time:2022-10-14Source:国际前沿科学研究院Click:214

Xiaoyu Xuan, Wanlin Guo, Zhuhua Zhang

Physical Review Letters  2022129,  047602

 

Abstract: Ferroelasticity is a prominent material property analogous to ferroelectricity and ferromagnetism, but its characteristic spontaneous structural polarization has remained less studied and poorly understood. Here, we use a high-throughput computation approach in conjunction with first-principles calculations to identify 65 (M=transition metal, X=nonmetal) monolayers exhibiting in-plane ferroelasticity out of 166 stable tetragonal monolayers. Molecular orbital theory analysis reveals that ferroelastic distortion arises when M−d/X−p and M−d/M−d couplings are both sufficiently weak. We have developed a physically interpretable one-dimensional descriptor that correctly predicts 89% of ferroelastics or nonferroelastics among the examined MX monolayers. Moreover, we find eleven MX compounds that exhibit strongly coupled ferroelasticity and magnetism driven by strain-controlled magnetocrystalline anisotropy, raising the prospects of developing 2D ferroelasticity-based multiferroics.

 

1.png


Link: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.047602


Contact us

Tel:025-84896467
E-mail:IFS@nuaa.edu.cn
Address:No.29 Yudao Road,Qinhuai District,Nanjing,Jiangsu PR China,210016.

link

--校内链接--

--校外链接--

Follow us

NUAA_IFS